29,152 research outputs found

    Scalar gain interpretation of large order filters

    Get PDF
    A technique is developed which demonstrates how to interpret a large fully-populated filter gain matrix as a set of scalar gains. The inverse problem is also solved, namely, how to develop a large-order filter gain matrix from a specified set of scalar gains. Examples are given to illustrate the method

    Remote sensing of intertidal morphological change in Morecambe Bay, U.K., between 1991 and 2007

    Get PDF
    Tidal Flats are important examples of extensive areas of natural environment that remain relatively unaffected by man. Monitoring of tidal flats is required for a variety of purposes. Remote sensing has become an established technique for the measurement of topography over tidal flats. A further requirement is to measure topographic changes in order to measure sediment budgets. To date there have been few attempts to make quantitative estimates of morphological change over tidal flat areas. This paper illustrates the use of remote sensing to measure quantitative and qualitative changes in the tidal flats of Morecambe Bay during the relatively long period 1991–2007. An understanding of the patterns of sediment transport within the Bay is of considerable interest for coastal management and defence purposes. Tidal asymmetry is considered to be the dominant cause of morphological change in the Bay, with the higher currents associated with the flood tide being the main agency moulding the channel system. Quantitative changes were measured by comparing a Digital Elevation Model (DEM) of the intertidal zone formed using the waterline technique applied to satellite Synthetic Aperture Radar (SAR) images from 1991–1994, to a second DEM constructed from airborne laser altimetry data acquired in 2005. Qualitative changes were studied using additional SAR images acquired since 2003. A significant movement of sediment from below Mean Sea Level (MSL) to above MSL was detected by comparing the two Digital Elevation Models, though the proportion of this change that could be ascribed to seasonal effects was not clear. Between 1991 and 2004 there was a migration of the Ulverston channel of the river Leven north-east by about 5 km, followed by the development of a straighter channel to the west, leaving the previous channel decoupled from the river. This is thought to be due to independent tidal and fluvial forcing mechanisms acting on the channel. The results demonstrate the effectiveness of remote sensing for measurement of long-term morphological change in tidal flat areas. An alternative use of waterlines as partial bathymetry for assimilation into a morphodynamic model of the coastal zone is also discussed

    Constraints of solar flare particle transport models from anisotropy observations at Voyager 1

    Get PDF
    In general a particle transport model for energetic solar flare particles contains a number of free parameters which are determined by fitting various features of observed particle events. Frequently the parameter values are not uniquely determined. In order to place tighter constraints on the models, the anisotropy of 1 and 25 MeV/nuc protons and helium nuclei were examined during the 22 November 1977 solar particle event using data from the LECP experiment on Voyager 1 at 1.6 AU. These observations were combined with the time intensity profiles at Voyager 1 and at 1 AU from ISEE-1 and IMP-8 to determine the magnitude and radial dependence of the interplanetary diffusion coefficient and the required injection duration at the sun. The first order anisotropy amplitudes for both 1 MeV and 25 MeV protons are observed to decrease from maximum values (approx. 1) during the event onset at Voyager 1 to values consistent with convection in the solar wind at about 3 days into the event decay phase. The intensity and anisotropy profiles at 1.6 AU are consistent with predictions of diffusive transport with a modest mean free path (lambda = approx. 0.1 AU)

    Antarctic meteorite descriptions, 1980

    Get PDF
    Specimens found in the Alan Hills area include 361 ordinary chondrites, 4 carbonaceous chondrites, 6 achondrites, and 2 irons. Thirteen specimens measured over 11 cm in diameter and 69 between 5 to 10 cm in diameter are reported. The remainder of the finds were small, and many were paired. One of the irons was estimated to weigh about 20 kilograms

    Seed Yield Prediction Models of Four Common Moist-Soil Plant Species in Texas

    Get PDF
    Seed production by moist-soil plant species often varies within and among managed wetlands and on larger landscapes. Quantifying seed production of moist-soil plants can be used to evaluate wetland management strategies and estimate wetland energetic carrying capacity, specifically for waterfowl. In the past, direct estimation techniques were used, but due to excessive personnel and time costs, other indirect methods have been developed. Because indirect seed yield models do not exist for moist-soil plant species in east-central or coastal Texas, we developed direct and indirect methods to model seed production on regional managed wetlands. In September 2004 and 2005, we collected Echinochloa crusgalli (barnyard grass), E. walterii (wild millet), E. colona (jungle rice), and Oryza sativa (cultivated rice) for phytomorphological measurements and seed yield modeling. Initial simple linear and point of origin regression analyses demonstrate strong relationships (P \u3c 0.001) among phytomorphological and dot grid methods in predicting seed production for all four species. These models should help regional wetland managers evaluate moist-soil management success and create models for seed production for other moist-soil plants in this region

    Using airborne laser altimetry to improve river flood extents delineated from SAR data

    Get PDF
    Flood extent maps derived from SAR images are a useful source of data for validating hydraulic models of river flood flow. The accuracy of such maps is reduced by a number of factors, including changes in returns from the water surface caused by different meteorological conditions and the presence of emergent vegetation. The paper describes how improved accuracy can be achieved by modifying an existing flood extent delineation algorithm to use airborne laser altimetry (LiDAR) as well as SAR data. The LiDAR data provide an additional constraint that waterline (land-water boundary) heights should vary smoothly along the flooded reach. The method was tested on a SAR image of a flood for which contemporaneous aerial photography existed, together with LiDAR data of the un-flooded reach. Waterline heights of the SAR flood extent conditioned on both SAR and LiDAR data matched the corresponding heights from the aerial photo waterline significantly more closely than those from the SAR flood extent conditioned only on SAR data

    On optimum Hamiltonians for state transformations

    Full text link
    For a prescribed pair of quantum states |psi_I> and |psi_F> we establish an elementary derivation of the optimum Hamiltonian, under constraints on its eigenvalues, that generates the unitary transformation |psi_I> --> |psi_F> in the shortest duration. The derivation is geometric in character and does not rely on variational calculus.Comment: 5 page
    • 

    corecore